
Distribution Category:Mathematics andComputer Science (UC-405)ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439|||||{ANL-93/28|||||{Fortran M Language De�nitionbyIan T. Foster and K. Mani Chandy�Mathematics and Computer Science Division
August 1993This research was supported in part by the O�ce of Scienti�c Computing, U.S.Department of Energy, under Contract W-31-109-Eng-38, and by the National Sci-ence Foundation's Center for Research in Parallel Computation, under ContractCCR-8809615.�Address: Department of Computer Science, California Institute of Technology,Pasadena, CA 91125

ContentsAbstract 11 Introduction 12 Syntax 12.1 Process, Process Block, Process Do-loop : : : : : : : : : : : : : : : : : : : 12.2 New Declarations : 22.3 New Executable Statements : 22.4 Mapping : 42.5 Restrictions : 43 Concurrency 44 Channels 45 Nondeterminism 56 Mapping 6References 6

iii

Fortran M Language De�nitionIan T. Foster K. Mani ChandyAbstractThis document de�nes the Fortran M extensions to Fortran 77. It updates anearlier de�nition, dated June 1992, in several minor respects.1 IntroductionThe reader is referred to other reports for additional information on the Fortran M lan-guage [2], its theoretical foundations [1], and a Fortran M compiler developed at ArgonneNational Laboratory [3].2 SyntaxBackus-Naur form (BNF) is used to present new syntax, with nonterminal symbols inslanted font, terminal symbols in TYPEWRITER font, and symbols de�ned in Appendix Fof the Fortran 77 standard [4] underlined. The syntax [symbol] is used to representzero or more comma-separated occurrences of symbol ; [symbol](1) represents one or moreoccurrences.2.1 Process, Process Block, Process Do-loopA process has the same syntax as a subroutine, except that the keyword PROCESS issubstituted for SUBROUTINE, INTENT declarations can be provided for dummy arguments,and a process cannot take an assumed size array as a dummy argument.A process call can occur anywhere that a subroutine call can occur. It has the samesyntax as a subroutine call, except that the keyword PROCESSCALL is substituted forCALL. In addition, process calls can occur in process blocks and process do-loops, andrecursive process calls are permitted. A process block is a set of statements preceded by aPROCESSES statement and followed by a ENDPROCESSES statement. A block includes zeroor one subroutine calls, zero or more process calls, and zero or more process do-loops. Aprocess do-loop has the same syntax as a do-loop, except that the PROCESSDO keyword isused in place of DO, and the body of the do-loop can contain only a process do-loop or aprocess call.A port variable or port array element can be passed as an argument to only a singleprocess in a process block or process do-loop, and then cannot be accessed in a subroutinecalled in that block. 1

2.2 New DeclarationsFive new declaration statements are de�ned: INPORT, OUTPORT, INTENT, PROCESSORS, andPROCESS COMMON.inport declaration :: INPORT ([data type]) [name](1)outport declaration :: OUTPORT ([data type]) [name](1)intent declaration :: INTENT(IN) [name](1) jINTENT(OUT) [name](1) jINTENT(INOUT) [name](1)machine declaration :: PROCESSORS(bounds)name :: variable name j array name j array declaratordata type :: fortran data type jfortran data type name jINPORT ([data type]) jOUTPORT ([data type])In the PROCESSORS statement, bounds has the same syntax as the arguments to anarray declarator. The product of the dimensions must be nonzero. Any program,process, subroutine, or function including a LOCATION or SUBMACHINE annotation mustinclude a PROCESSORS declaration.The symbol fortran data type denotes the six standard Fortran data types. The dimen-sions in an array declarator in a port declaration can include variable declared in theport declaration, parameters, and arguments to the process or subroutine in which thedeclaration occurs. The symbol *" cannot be used to specify an assumed size. Variablesdeclared within a port declaration have scope local to that declaration.A PROCESS COMMON statement has the same syntax as a COMMON statement.2.3 New Executable StatementsThere are seven new executable statements: CHANNEL, MERGER, MOVEPORT, SEND, RECEIVE,ENDCHANNEL, and PROBE. Each of these takes as arguments a list of control speci�ers,termed a control information list. The SEND and RECEIVE statements also take otherarguments. A control information list can include at most one of each speci�er, exceptthose that name ports. The number of allowable port speci�ers varies from one statementto another. The �rst three of these statements are as follows.channel statement :: CHANNEL([channel control](1))merge statement :: MERGER([merge control](1))moveport statement :: MOVEPORT([moveport control](1))channel control :: outport name j OUT=outport name jinport name j IN=inport name jIOSTAT=storage location j ERR=labelmerge control :: outport speci�er j OUT=outport speci�er jinport name j IN=inport name jIOSTAT=storage location j ERR=label2

moveport control :: port name j FROM=port name jport name j TO=port name jIOSTAT=storage location j ERR=labeloutport speci�er :: outport name j data implied do listoutport name :: port nameinport name :: port nameport name :: variable name j array element nameA CHANNEL statement must include two port speci�ers, and these must name an out-portand an in-port of the same type. If the strings OUT= and IN= are omitted, these speci�ersmust occur as the �rst and second arguments, respectively.A MERGER statement must include at least two port speci�ers, and these must name anin-port and one or more unique out-ports, all of the same type. If the strings OUT= andIN= are omitted, the out-port speci�ers must precede the in-port speci�er, which mustprecede any other speci�ers,In a MOVEPORT statement, the port speci�ers must name two in-ports or two out-ports,both of the same type. If the strings FROM= and TO= are omitted, these speci�ers mustoccur as the �rst and second arguments, respectively. The �rst then speci�es the \from"port and the second the \to" port.The other four statements are as follows.send statement :: SEND([send control](1)) [argument]receive statement :: RECEIVE([recv control](1)) [variable]close statement :: ENDCHANNEL([send control](1))probe statement :: PROBE([probe control](1))send control :: outport name j PORT=outport name jIOSTAT=storage location j ERR=labelrecv control :: inport name j PORT=inport name jIOSTAT=storage location j ERR=label j END=labelprobe control :: inport name j PORT=inport name jERR=label j IOSTAT=storage location j EMPTY=storage locationstorage location :: variable name j array element nameargument :: expression jvariable :: variable name j array element name j array nameIf a port speci�er does not include the optional characters PORT=, it must be the �rstitem in the control information list. A storage location speci�ed in an IOSTAT= or EMPTY=speci�er must have integer and logical type, respectively.3

2.4 MappingThe mapping annotations LOCATION and SUBMACHINE are appended to process calls:process call LOCATION(indices)process call SUBMACHINE(indices)where indices has the same syntax as the arguments to an array element name.2.5 RestrictionsPort variables cannot be named in EQUIVALENCE statements. Programs cannot includeCOMMON data; PROCESS COMMON must be used instead.3 ConcurrencyWith two exceptions, a process executes sequentially, in the same manner as a Fortranprogram. That is, each statement terminates execution before the next is executed. Thetwo exceptions are the process block and the process do-loop, in which statements executeconcurrently. That is, the processes created to execute these statements may execute inany order or in parallel, subject to the constraint that any process that is not blocked(because of a RECEIVE applied to an empty channel) must eventually execute. A processblock or process do-loop terminates, allowing execution to proceed to the next statement,when all its process and subroutine calls terminate.A process can access its own process common data but not that of other processes. Bydefault, process arguments are passed by value and copied back to the parent process, intextual and do-loop iteration order, upon termination of the process block or process do-loop in which the process is called, or upon termination of the process, if the process doesnot occur in a process block or do-loop. A dummy argument declared INTENT(INOUT)is treated in the same way. If a dummy argument is declared INTENT(IN), then thecorresponding parent argument is not updated upon termination. If a dummy argumentis declared INTENT(OUT), the value of the variable is de�ned to a default value upon entryto the process.4 ChannelsProcesses communicate and synchronize by sending and receiving values on typed com-munication streams called channels. A channel is created by a CHANNEL statement, whichalso de�nes the supplied in-port and out-port to be references to the new channel. Achannel is a �rst-in/�rst-out message queue. An element is appended to this queue byapplying the SEND statement to the out-port that references the channel. This statementis asynchronous: it returns immediately. An element is removed from the queue by apply-ing the RECEIVE statement to the in-port that references the channel. This statement issynchronous: it blocks until a value is available. The ENDCHANNEL statement appends an4

end-of-channel (EOC) message to the queue. The MOVEPORT statement copies a channelreference from one port variable to another.These statements all take as arguments a control information list (cilist). The optionalIOSTAT=, END=, and ERR= speci�ers have the same meaning as the equivalent Fortran I/Ospeci�ers, with end-of-channel treated as end-of-�le, and an operation on an unde�nedport treated as erroneous. An implementation should also provide, as a debugging aid,the option of signaling an error if a SEND, ENDCHANNEL, or RECEIVE statement is appliedto a port that is the only reference to a channel.SEND(cilist) E1,...,En Add the values E1, ..., En (the sources) to the channel referencedby the out-port named in cilist (the target). The source values must match the datatypes speci�ed in the port declaration, in number and type.RECEIVE(cilist) V1,...,Vn Block until the channel referenced by the in-port named incilist (the target) is nonempty. If the next value in the channel is not EOC, movevalues from the channel into the variables V1, ..., Vn (the destinations). The des-tination variables must match the data types speci�ed in the port declaration, innumber and type.ENDCHANNEL(cilist) Append an EOC message to the channel referenced by the out-portnamed in cilist.MOVEPORT(cilist) Copy the value of the port speci�ed \from" in cilist (the source) to theport speci�ed \to" (the target), and set the source port to unde�ned.A port is initially unde�ned. An unde�ned port becomes de�ned if it is included in aCHANNEL (or MERGER: see below) statement, if it occurs as a destination in a RECEIVE, orif it is named as the target of a MOVEPORT statement whose source is a de�ned port. Anyother statement involving an unde�ned port is erroneous.Application of the ENDCHANNEL statement to an out-port causes that port to become un-de�ned. The corresponding in-port remains de�ned until the EOC message is received bya RECEIVE statement, and then becomes unde�ned. Both in-ports and out-ports becomeunde�ned if they are named as the source of a SEND or MOVEPORT operation.Storage allocated for a channel is reclaimed when both (a) either the out-port has beenclosed, or the out-port goes out of scope or is rede�ned, and (b) either EOC is receivedon the in-port, or the in-port goes out of scope or is rede�ned.5 NondeterminismThe MERGER and PROBE statements are used to specify nondeterministic computations.MERGER is identical to CHANNEL, except that it can de�ne multiple out-ports to be referencesto its message queue. Messages are added to the queue as they are sent on out-ports,with the order of messages from each out-port being preserved and all messages eventuallyappearing in the queue. An EOC value is added to the queue only after it has been senton all out-ports. 5

The PROBE statement is used to obtain status information for a channel. It can be appliedonly to an in-port. The IOSTAT= and ERR= speci�ers in its control list are as in the FortranINQUIRE statement. A logical variable named in an EMPTY= speci�er is assigned the valuetrue if the channel is known to be empty, and false otherwise. Knowledge about sendsis presumed to take a non-zero but �nite time to become known to a process probing anin-port. Hence, a PROBE of an in-port that references a nonempty channel may signal trueif the channel values were only recently communicated. However, if applied repeatedlywithout intervening receives, PROBE will eventually signal false, and will then continue todo so.6 MappingThe PROCESSORS declaration and the LOCATION and SUBMACHINE annotations have no se-mantic content, but determine performance by specifying how processes are to be mappedwithin an N -dimensional array of processors (N � 1).The PROCESSORS declaration is analogous to a DIMENSION statement: it declares theshape and dimensions of the processor array that is to apply in the program, process, orsubroutine in which it appears. As we descend a call tree, the shape of this array canchange, but its size can only become smaller, not larger.A LOCATION annotation is analogous to an array reference. It speci�es the virtual pro-cessor on which the annotated process is to execute. The speci�ed location cannot beoutside the bounds of the processor array speci�ed by the PROCESSORS declaration.The SUBMACHINE annotation is analogous to an array reference in a subroutine call. Itspeci�es that the annotated process is to execute in a virtual computer with its �rstprocessor speci�ed by the annotation, and with additional processors selected in arrayelement order. These processors cannot be outside the bounds of the processor arrayspeci�ed by the PROCESSORS declaration.References[1] Chandy, K. M., and Foster, I., A deterministic notation for cooperating processes,Preprint MCS-P346-0193, Mathematics and Computer Science Division, ArgonneNational Laboratory, Argonne, Ill., 1993.[2] Foster, I., and Chandy, K. M., Fortran M: A language for modular parallel pro-gramming, Preprint MCS-P327-0992, Mathematics and Computer Science Division,Argonne National Laboratory, Argonne, Ill., 1992.[3] Foster, I., Olson, R., and Tuecke, S., Programming in Fortran M, Technical ReportANL-93/26, Argonne National Laboratory, Argonne, Ill., 1993.[4] Programming Language Fortran, American National Standard X3.9-1978, AmericanNational Standards Institute, 1978. 6

Distribution for ANL-93/28Internal:J. M. Beumer (100)I. T. Foster (25)F. Y. FradinG. W. PieperR. L. StevensC. L. WilkinsonTIS FileExternal:DOE-OSTI, for distribution per UC-405 (54)ANL-E Library (2)ANL-W LibraryManager, Chicago Operations Office, DOEMathematics and Computer Science Division Review Committee:W. W. Bledsoe, The University of Texas, AustinB. L. Buzbee, National Center for Atmospheric ResearchJ. G. Glimm, State University of New York at Stony BrookM. T. Heath, University of Illinois, UrbanaE. F. Infante, University of MinnesotaD. O'Leary, University of MarylandR. E. O'Malley, Rensselaer Polytechnic InstituteM. H. Schultz, Yale UniversityJ. Cavallini, Department of Energy - Office of Scientific ComputingK. Mani Chandy, California Institute of TechnologyF. Howes, Department of Energy - Office of Scientific Computing
7

